Zoos and the Protection of Rare Animals
This semester as an elective I am taking another course in the zoology department (the first being Patricia McConnell’s Human and Animal Relationships last semester). In Zack Peery’s Extinction of Species we have been discussing the role that institutions like zoos play in helping to preserve and ensure the survival of rare species. Often we think of zoos in terms of their enjoyment factor for humans or conversely the lack of enjoyment (we think) that animals have being caged. I’ve visited the zoo here in Madison and had a nice time being there with my family, but I was definitely thinking about the care and condition of the animals. Now, I thought all of the animals in the zoo I visited looked healthy and happy, but it did get me thinking overall about how important zoos are for the care and conservation of animals, particularly those that are rare or in need of special healthcare.
Zoos play an important role in conservation efforts, because the good ones provide animals with a safe place to live that is protected from outside threats (predators, pollution, loss of habitat, etc.), in addition to access to veterinarians. I was reminded of this fact when I saw the story of Manukura, a rare white kiwi being covered by the BBC. Not that we really needed further proof that a good cute animal story is going to make it into the news, but I wanted to mention the kiwi story because I think it is a good example of the public rallying behind a very charismatic animal, and a zoos effort to save and protect it.
![]() |
Manukura. Source: Zooborns |
A kiwi is a flightless bird that lives only in New Zealand, and is similar in size to a chicken. There are five species of kiwi, which are all endangered. Kiwis are typically brown or tan in color, but as a result of a naturally occurring genetic mutation Manukura was born white (note that this isn’t the same as being an albino). Manukura was living in Pukaha Mount Bruce National Wildlife Center when rangers noticed that the six-month-old bird wasn’t eating. Veterinarians at New Zealand’s Wellington Zoo were called in to examine the bird and found that two large stones were obstructing its intestines.
Manukura was able to pass one of the stones naturally, but the other had to be taken out by a urology specialist from Wellington Hospital who broke the stone up with a laser and then removed the pieces with an endoscope. According to the Wildlife Center, the procedure was comparable to the removal of kidney or gall stones in a human. The bird is doing well following her procedure, much to the joy of her Facebook followers who were able to follow her progress throughout the ordeal.
I think that this story is a great case study for a lot of the topics that we’ve been discussing in my zoology class. It shows a viable option (the creation of wildlife refuges) for the conservation of a species, how a the public can rally behind a species that is particularly like able and important (the kiwi is a national symbol of New Zealand), how zoos can provide access to resources necessary to save an animal, and how communication with the public (particularly through social media) is an important part of conservation and animal protection efforts.
Covering The Wisconsin Science Festival
In my integrated media and storytelling class this semester our first project was to cover an event using pictures and audio, and combine it into a slideshow. I chose the first Wisconsin Science Festival at the Wisconsin Institutes for Discovery.
I had some upload problems trying to convert from a SoundSlides project into something uploadable but I finally got there. I edited the pictures in Photoshop and iPhoto, and edited the audio using Audacity. I lost a lot of photo quality in the conversion, but please watch and let me know what you think. This was my first foray into multi-media so any feedback would be much appreciated.
Science For Six-Year-Olds: Sugar Maple Trees
This post is part of a recurring segment here on Science Decoded where I blog for the first graders at Lincoln-Hubbard Elementary School about the various units in their science program.
***
I hear you are studying trees in your science class, and I wanted to share with you some of the special aspects of a certain type of tree: The Sugar Maple.
The Sugar Maple (scientific name: Acer saccharum) is a deciduous tree. Deciduous means that its leaves change color and fall off during the Fall. A Sugar Maple tree can grow as tall as 82-115 feet, but it takes a long time to get that big. After ten years (thats older than all of you!) a Sugar Maple tree will usually only be about 16 feet tall. The leaves on a Sugar Maple tree are usually around 7-8 inches long, and have five lobes. Take a look at the picture of the leaves, do they look familiar? Do any of you have Sugar Maple trees in your backyard? What about at the school?

The Sugar Maple is a tree that can be found in hardwood forests throughout northeastern North America, which includes Canada and the United States. Take a look at this map, the green part is where Sugar Maple trees grow. Do you see New Jersey? How about Wisconsin? Sugar Maple trees grow in New Jersey where you are, and Wisconsin where I am.
Sugar Maples are very important because they are able to grow really well in shady areas and also provide habitat (places to live) for animals in the forest. This species of tree isn’t rare or endangered, but it is a special part of these forest ecosystems. An ecosystem is a biological (natural) area made of all the living and non-living parts of the environment, this means all the plants (like Sugar Maples!) animals, water, sunlight, and even soil. All of these things need to be healthy to make the environment strong. In addition to being important for the forest ecosystem, Sugar Maples also have a special ability. These trees can also be useful for people to make products like Maple Syrup.
Sugar Maple trees have a sugary sap inside them that people can harvest in the Spring by making a hole in the trunk and collecting the sap that runs out. When the sap is heated, some of the water evaporates, leaving behind syrup. Here is an example of what collecting the sap looks like, it is being drained into those buckets attached to the trees
Now I have a surprise for you! We have a special Farmer’s Market here in Wisconsin, that is one of the biggest Farmer’s Markets in the country. Have any of you ever gone to the Farmer’s Market where you live? It is a place where local farmer’s bring their fruits, vegetables, and other products to sell. Here in Wisconsin you can buy some of the products people make from Sugar Maple trees at the Farmer’s Market.
I filled up a little package for you with information about the Wisconsin Farmer’s Market, some Sugar Maple products, and even a little surprise from the University of Wisconsin’s mascot Bucky Badger. I hope you like it! Let me know if you have any questions about Sugar Maple trees!
BioTechnology Patents: Kyoto Claims iPSCs
Can you patent a gene? What about a cell? When it comes to the components of life, and more importantly the ideas, processes, and procedures developed to manipulate these components, what belongs to who? This is a question that is certainly going to be fought out from the patent office to the courts as more and more biomedical discoveries are made.
![]() |
iPS cell cluster. Source: NINDS.NIH.gov |
One discovery that has recently (meaning August) been in the news for patent applications is Shinya Yamanaka’s 2006 discovery of the combination of genes that can be used to reprogram adult cells to a pluripotent (capable of becoming any kind of cell) state. With these induced pluripotent stem cells (iPSCs) lies the hope of a suitable answer to the debate over the need for pluripotency, but the social and religious controversy over using human embryonic stem cells (which are naturally pluripotent).
While working at Kyoto University in Japan, Yamanaka found that the genes Oct3/4, SOX2, c-Myc, and Klf4 are key to pluripotency. This discovery led to the creation of the first iPSCs. Now, five years and millions of dollars in research later, Kyoto University has obtained patent rights for iPSC technology in six nations and two regions, including the United States. This development leads me back to the question I started with, can you patent a gene? What about the ideas or technology based on those genes? Apparently, you can because Kyoto University has. But, I’m still quite curious about how this will play out functionally.
The discovery of iPSCs was huge news. It prompted researchers around the world to start working with iPSCs, many of whom have subsequently made their own discoveries, published their own research in peer reviewed journals (just type pluripotent into PubMed you’ll see what I mean), and expanded greatly on the existing body of knowledge about pluripotency. This includes the discovery of numerous variations of gene combinations that play a role in pluripotency. So if Kyoto University owns the original idea, do they own everyone elses’ work too? According to university spokeswoman Akemi Nakamura, they do. Nakamura says the patent broadly covers variations of the technology developed since 2006 in laboratories around the world.
In a press release the University stated:
“The US patent covers combinations of nuclear reprogramming family factors comprising an Oct family gene, a Klf family gene, and Myc family gene; or an Oct family gene, a Klf family gene, and a cytokine. This means that if companies use a combination of the nuclear reprogramming genes and generate iPSCs, regardless of the kinds of vectors, they need to get the patent license.”
So if Kyoto University owns the right to the genes, and the subsequent developments based on the genes what does that mean for iPSC researchers? Right now the university says it will not restrict research using iPSCs for non-profit purposes, so that would mean research whose end goal isn’t the marketing of a specific product based on iPSC technology will be able to continue unhindered. Companies that want to work with iPSCs for profit may have to pay a licensing fee. Although, it is important to note that not all iPSC research is based on these genes – there are other combinations of genes that can induce pluripotency, and thus lines of inquiry in this field that don’t belong to Kyoto University.
How important all of this will be, and when it will be important is a bit murky. iPSCs have their own problems (namely, teratomas) and haven’t yet been developed for widespread, let alone commercial, use. Though, with all of the resources being poured into iPSC development, I think it is only a matter of time until the cells become more useable. This is a story to watch, it is hard to say exactly how it will work out but it is sure to be an issue that continues to come up.
As for me, I’m not really sure where I fall on this issue. I can see the need to protect intellectual achievements and make sure that the wrong people don’t profit, but at the same time I wish it wasn’t necessary and open inquiries could be pursued without people having to worry about others cashing in on their ideas. If only it could be that way.
Book Review: Devices & Desires
I thought it was amusing that the first condoms in history were made from the casings of animal intestines. Yet, when I tried to share this information I was met with the typical head shaking, and entreaties to find different reading material characteristic of me sharing new found knowledge with friends. In my post about Mary Roach’s Stiff, I mentioned how my friends don’t find the interesting tidbits I gleaned about cadavers to be proper cocktail conversation. Well, the same goes for all the interesting tidbits I gathered from reading Andrea Tone’s Devices & Desires.
I am taking a history of science course this semester on the history of women and health in America. As a grad student in an undergrad class, I have to complete extra work to make the requirements. One of the extra assignments was to read and discuss Devices & Desires: A History of Contraceptives in America with the other grad student and the professor. I am a fish out of water in this class, having no background whatsoever in women’s issues (aside from, you know being a woman myself), and while I was aware of the timeline for the development of contraceptives there was a lot about them I didn’t know. Thus my excited, and apparently gross, interest in what I learned from the book.
Devices & Desires can be broken roughly into three sections: condoms, the pill, and intrauterine devices (IUDs). The section about condoms was by far the most interesting and engaging. My professor (Karen Walloch) suggested that perhaps this was the section that Tone researched for her thesis, and while that is just speculation it does seem to be the part of the book that the writer was most invested in. Fun fact: when scientists first developed a way for rubber to be shaped and thus used as condoms, companies that today we associate with tires (Firestone, BF Goodrich, Goodyear) all dabbled in condoms.
My favorite chapters in the book dealt with the military’s stance on condoms during WWI, and how they eventually had to cave and endorse them because the health care cost of venereal diseases was through the roof. The book had a few different advertisements and propaganda posters for servicemen urging them to stay away from women that I found highly amusing. Apparently just say no, and taking the moral high ground are no match for a dame in a dress.
After the condom chapters the book tackles the birth control pill. While I found the information interesting, I felt like it fell a little flat. For such a controversial topic, that had such a drastic impact on women’s lives I think Tone could have infused the writing with more personality. It just wasn’t as colorful as the condom chapters. As a science writer, I did really appreciate the description of the research process that went into making synthetic hormones and how these were tested. The initial testing on the pill was done in Puerto Rico, because the researchers/financiers thought there wouldn’t be as much controversy and public push back. They were very wrong. But, if you aren’t interested in the scientific process, I feel like these chapters might drag on for you as a reader.
From the pill, the book moves on to the IUD. Tone focuses on a particular IUD, the Dalkon Shield. I was really shocked by this part of the book. Shocked, and really kind of outraged that I hadn’t heard about this health scandal. In the 1970’s the Dalkon Shield was the cause of more than 200,000 lawsuits due to a high percentage of severe injury among its users. The design of this IUD made it a ticking time bomb that women were sticking into their bodies. Infections (and subsequent Pelvic Inflammatory Disease) caused by the materials used in the device caused severe damage to women’s reproductive systems (even sterility), the device could also perforate the uterine wall, and women who did get pregnant while wearing the device often had children born with severe birth defects.
Lawsuits against the A.H. Robbins Corporation (who marketed the Dalkon Shield) won millions of dollars in damages for women and families that had been affected. The real tragedy in the Dalkon Shield scandal is that the company was well aware of the device’s problems. Internal documents and studies proved that the company knew the device was dangerous, and marketed it anyway. As a result of the scandal, in 1976 the Medical Device Amendments to the Food, Drug, and Cosmetic Act mandated the U.S. Food and Drug Administration for the first to time test and approve of medical devices.
It is important to note that the major flaw in the Dalkon Shield: a porous, multifilament string that was basically a highway for bacteria straight up into the uterus, isn’t a part of IUDs currently on the market. I know several people who use IUDs and am relieved to know that the devices have been improved since they first debuted on the contraceptive scene. However, the Dalkon Shield story really made me stop and think about the human cost of not only contraceptive devices, but all new medical breakthroughs.
As much as I learned from and was moved by reading the chapters about IUDs in Tone’s book, these chapters left me wanting more. I felt like the book ended very abruptly, and that there was still a lot that could have been said about the topic. My professor pointed out that when you are writing a book like this, you have to choose a place to stop, otherwise you could just go on and on. I understand that, but I think the book could have ended more smoothly.
Overall, I thought Devices & Desires was a great read and I learned a lot from it that I hadn’t been aware of otherwise. The book was a little disjointed in parts, and you have to be invested in seeing it through (and apparently not squeamish) but if you come from an uninformed background like mine, I can almost guarantee you’ll learn something new.
Dinosaur Stopped Dead In Its Tracks, Literally.
We know a tremendous amount about dinosaurs from studying their fossilized remains, but the amount that we don’t know or haven’t seen in the fossil record far surpasses our knowledge. I’m a sure sucker for a good dinosaur fossil story, and pitched several while interning at Geekosystem over the summer. I’m still working through my list of links that didn’t make the cut this summer, and wanted to share this dinosaur discovery (that I read about in this New Scientist article).
![]() |
Image credit: Grzegorz Niedzwiedzki |
Science For Six-Year-Olds: The States Of Matter
This is a special post for my science blogging buddies in Mrs. Podolak’s (my Mom’s) class at Lincoln-Hubbard Elementary School. This year I will periodically be blogging about the topics the first graders study for their science units. All of these special posts will be distinguished by the title “Science For Six-Year-Olds.” Even if you’ve already passed the first grade, I hope you’ll still enjoy these posts as we go back to basics to learn about science.
***
Hello First Graders! I am so excited to be your blogging buddy this year. My name is Erin, and I’m a science journalist. A science journalist is someone who writes about different science discoveries, and tries to talk about science in ways that everyone can understand. I go to school at the University of Wisconsin, Madison. Have any of you ever been to Wisconsin? Mrs. Podolak can show you where Wisconsin is on the map. I grew up in New Jersey just like you, but now I’m pretty far away. I moved here to learn more about being a science journalist.
I heard from Mrs. Podolak that you are studying the states of matter. Matter is anything that occupies space and has mass. Matter comes in different forms, which you should already be familiar with. There are solids, liquids, and gases. A solid is firm or hard and has a fixed shape. A liquid flows and moves, and can change shape based on the container it is in. A gas is something that expands to fill any space available.
I think the following song could help you understand the difference between solids, liquids, and gases. It is by a band called They Might Be Giants:
A Pollution Solution, Brought To You By Lehigh University
The Lehigh Mountain Hawk in 2008 photo credit: Erin Podolak |
If you’ve ever checked the About section of this blog, you’ll know that my alma mater is Lehigh University. I loved my time at Lehigh (it’s where I first learned about science writing) and thinking about the university evokes a lot of positive memories. But, as much as I love Lehigh, I have to admit it isn’t exactly a premier research institution (despite what they might tell you in the pamphlets). Not that research doesn’t go on at Lehigh, but it’s no University of Wisconsin-Madison as far as a reputation for cutting edge research is concerned.
Imagine my surprise as I was perusing Scientific American a few weeks ago when I stumbled upon Lehigh while reading an article (reprinted from ClimateWire) about a newly developed material that has the ability to pull carbon dioxide and methane pollution from other gases. The material was developed by Kai Landskron, Paritosh Mohanty and Lillian D. Kull of Lehigh’s department of chemistry, and could potentially be used to help capture greenhouse gases.
Creating carbon-sucking materials has been a goal for scientists for years as a way to combat the effects of climate change caused by an excess of greenhouse gases in the atmosphere. However, existing systems tend to be expensive, use a tremendous amount of energy, or don’t work well at high temperatures. The new material developed at Lehigh avoids these problems.
The new substance was created using chemicals called diaminobenzidine and hexachlorocyclotriphosphazene. These chemicals are cheaper than others used for carbon absorption, and can operate at heat as high as 400 degrees Celsius. In addition to avoiding the problems that have plagued early carbon capture systems the researchers also had to create something that could take carbon dioxide and methane out of a gas stream, but then release it at a later time for permanent storage underground once compressed.
![]() |
Coal power plant Somerset NY Credit: Matthew D. Wilson/Wikimedia Commons. |
When they developed their “sponge” the researchers found that the material drew more carbon dioxide and methane from the air than other gases, like nitrogen. This makes the material idea for capturing harmful greenhouse gases out of mixed emissions. The researchers have suggested that the material could be placed inside a tower located adjacent to a coal burning power plant, the flue gas generated from the burning coal could then be transported via pipeline through the material to capture greenhouse gases from the emissions.
According to the researchers, the material has a 90% success rate capturing CO2 from a gas stream. However, some problems with the mass production of this material include the fact that real power plants would emit a more complex mixture of gases than was tested by the Lehigh research team, the material may be too dense for manufacture on a large enough scale, and production would create chemical byproducts that may become difficult to control.
The researchers are confident however, in the product they have created. Landskron told ClimateWire:
“There is no fundamental difference in doing this in the lab versus doing it at an industrial scale.” This material hasn’t been tested on a commercial scale and it remains unknown if it could actually be implemented practically, so we’ll have to wait and see if the material can stand up to the high expectations its creators have set up for it.
Even though the chemicals used in the material are cheaper than others used for carbon capture, the cost of producing and implementing the technology is still a barrier to its use. The researchers hoped to test the material on an existing coal plant in the US earlier this year, but the effort stalled due to a lack of funds, even with a 50% investment by the Department of Energy.
On campus with friends before my graduation from Lehigh in 2009. |
So, while the research is promising and it demonstrates an interesting idea with a lot of potential for carbon capture it needs support and further research to make it something that could actually be used commercially. If you’d like to know more, the research was published in July in Nature Communications.
I was excited to see Lehigh in the news for scientific research. Research wasn’t a big part of my life at Lehigh, in fact I rarely encountered it, but Lehigh is where my passion for science evolved into a career. It is where, with the support of the journalism department and the wonderful professors who gave me my first real introduction to writing, I realized that I could have a career dedicated to science without being a scientist, and that has shaped the course of my life. I’m proud of my school, and even prouder to know that Lehigh researchers are working to find solutions to our greenhouse gas problems. Now lets get some funding to make that research a reality!
Halfway To My Master’s
I successfully made it back to Madison in time for the first day of classes on Friday. After the usual grocery shopping, school supply gathering, schedule printing, and bus pass acquiring that goes along with getting oriented for the school year I kicked things off with my zoology class, the Extinction of Species.
![]() |
UW Madison Campus, Bascom Hall via news.wisc.edu |
This is my second zoology class. If you read this blog regularly you know that I loved/struggled with my zoology class last semester about the psychology and biology of human and animal behavior. I really want to do my out of department electives in the sciences but I don’t have most of the pre-requisites for biology and environmental science classes. I’m not interested in taking classes that don’t count toward my degree, so that has made it difficult to find the right electives. Looking elsewhere, I found the zoology department and the classes offered seem to be really interesting. Even though it is sure to be a challenge I’m excited about the Extinction of Species course.
This semester I’m also taking a multimedia journalism course and a history of science course about women and medicine. I think all of these classes will push me out of my comfort zone and challenge me to learn new things. They are all correlated with and applicable to my interest in science writing, but I’ve never taken any classes on these specific topics before. Which really is why I’m here, right? I’m looking forward to getting underway with the semester and getting back into a school frame of mind. I like the freedom that goes along with being an academic versus being part of the working world, but I still like the routine of having certain work due every week. I also love not only having time to read, but having to read as a requirement. I managed to get lost in Memorial Library yesterday, but eventually (with the help of a map) found my way around.
![]() |
Madison Farmer’s Market via biochem.wisc.edu |
When I moved to Madison in August 2010 the idea of living here for two years seemed so daunting, and here I am halfway through. This morning I went to the Madison Farmer’s Market (which if you don’t know is pretty amazing) and just enjoyed being part of the city. I was by myself, but still enjoyed walking around the capitol square looking at all the vendors. I ended up buying some wildflowers and apple cider before heading home. It is really nice to feel more comfortable living here, I feel like I spent all of last year figuring this place out. It just has such a different vibe from the East Coast. It can be hard to describe what makes it different, because it just has to do with the way the community feels.
I’m excited to finish my Master’s and move back to the East Coast, but I want to make sure that I make the most of the remainder of my time in Madison. This community has so much to offer in terms of activities and I want to do a better job taking advantage of them. I know that the chances of me living here after I finish my program are basically non-existent so I need to get the most out of Madison while I still can.
Things on my Madison to do list for the Fall include:
- Attend a Badger football game
- Attend the Farmer’s Market on a regular basis
- Take advantage of free/low cost concerts
- Take part in at least one of the many activities centered around Madison’s lakes (canoeing maybe?)
- Try Babcock Dairy icecream
I have to come up with a Winter/Spring to do list. I know for sure I want to make it out to Chicago, but if anyone has any suggestions for things I should do in Madison (and the midwest) during my last year let me know, I’m sure there are things I’m not thinking of right now. I’m especially interested in class recommendations for next semester, I’m not sure what I should take but I’m definitely open to trying new things.
Intern Introspection
The summer is rapidly coming to a close, and I’m already prepping to go back to Madison for the start of classes. Hurricane Irene has put a damper on my flight plans so I’m stuck in New Jersey for two extra days but it isn’t going to be much of a summer addition considering we might very well blow, or float, away. Before the summer is officially packed away, I wanted to do some reflecting on my summer internship experience writing for Geekosystem.
One of the best and worst things about writing for Geekosystem was that I worked as a real writer. I knew ahead of time that the internship was unpaid, but still when you are doing the work of a regular employee it gets a little frustrating to just watch your bank account drain despite how hard you work. Doing all the work and not getting paid was a pretty big bummer. For the summer it ended up costing me $819 for train tickets on NJ Transit, plus about $20 a week in Metrocards. I kept my job freelancing as a medical copywriter, so I worked nights doing that to keep up with the cost of New York City. I also had a lot of help from my parents, I was living at home and eating their food and getting other financial help which is really what made the internship possible.
Still, the experience also had value because I was working as a real writer. Working as a writer was rewarding and frustrating. I struggled a lot with pitching posts and getting them accepted. Geekosystem does science, tech, video games, and internet culture. Science is only a fraction of the content, so it makes it really difficult to get a science post accepted. It has to be a science post that is going to get a lot of traffic, and it can be hard to tell what is going to be big. I was surprised a lot by posts that didn’t get the traffic I thought they would (both too much and too little). There was a lot of reward from seeing a post get picked up by GoogleNews so when I did come up with a post that made it big (I had a few) it was a great feeling.
I can’t say my writing is all that much better for having done the internship, but I’d like to think I didn’t start off that bad. I think the internship helped me polish my style with things like comma usage, punctuation, and occasionally sentence structure. More than writing I think I learned some important lessons in working with an editor and the business side of being a writer. Internships in general have a lot of value if you go after the experience you really need. I wish I had been more adamant about learning the tech beat and doing more multimedia. You need to know what you are getting yourself into with an internship and really weigh the costs and benefits before deciding if it is right for you.
I’m happy to have had the experience of working for Geekosystem because it helped me narrow my focus as far as what I’d like to do professionally. I don’t think I want to be a blogger for profit, but I still love having a blog and being able to give my point of view in a space that is my own. I’m even more excited now to head back to Madison to finish up my degree so I can get out there and find a job.
If you don’t follow this blog regularly and you’d like to know more about my work with Geekosystem check out my science posts from Geek Roundups I, II, and III, and here are the posts from my last few days:
Researchers Create The First Living Nanowire From Bacteria
Researchers Announce Successful Clinical Trial Of Gene Therapy Treatment For Leukemia
Pregnant Fossil Is First Evidence That Plesiosaurs Gave Birth To Live Young
This Is What The Perseid Meteor Shower Sounds Like
Study: Benedict Arnold Bacteria Betray Their Brethren, Go On Killing Spree
Electronic Sensors Stick Like Temporary Tattoos, Present Endless Possibilities
Primitive Eel Species Described As “Living Fossil” Discovered
NASA Debunks Comet Elenin Rumors, No Armageddon Here
The Moon May Be Millions Of Years Younger Than Previously Thought
For The Love Of Bud, Marijuana Genome Sequenced